Positive Neighborhoods of Rational Curves
نویسندگان
چکیده
منابع مشابه
Rational Curves
Rational curves and splines are one of the building blocks of computer graphics and geometric modeling. Although a rational curve is more exible than its polynomial counterpart , many properties of polynomial curves are not applicable to it. For this reason it is very useful to know if a curve presented as a rational space curve has a polynomial parametrization. In this paper, we present an alg...
متن کاملGeneratrices of Rational Curves
We investigate the one-parametric set G of projective subspaces that is generated by a set of rational curves in projective relation. The main theorem connects the algebraic degree δ of G, the number of degenerate subspaces inG and the dimension of the variety of all rational curves that can be used to generateG. It generalizes classical results and is related to recent investigations on projec...
متن کاملBisector curves of planar rational curves
This paper presents a simple and robust method for computing the bisector of two planar rational curves. We represent the correspondence between the foot points on two planar rational curves C1(t) and C2(r) as an implicit curve F(t; r) = 0, where F(t; r) is a bivariate polynomial B-spline function. Given two rational curves of degree m in the xy-plane, the curve F(t; r) = 0 has degree 4m 2, whi...
متن کاملTopological Neighborhoods for Spline Curves: Practice & Theory
The unresolved subtleties of floating point computations in geometric modeling become considerably more difficult in animations and scientific visualizations. Some emerging solutions based upon topological considerations will be presented. A novel geometric seeding algorithm for Newton’s method was used in experiments to determine feasible support for these visualization applications. 1 Computi...
متن کاملK3 Surfaces, Rational Curves, and Rational Points
We prove that for any of a wide class of elliptic surfaces X defined over a number field k, if there is an algebraic point on X that lies on only finitely many rational curves, then there is an algebraic point on X that lies on no rational curves. In particular, our theorem applies to a large class of elliptic K3 surfaces, which relates to a question posed by Bogomolov in 1981. Mathematics Subj...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Brazilian Mathematical Society, New Series
سال: 2016
ISSN: 1678-7544,1678-7714
DOI: 10.1007/s00574-016-0009-5